↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
ackermann_in(s(M), s(N), Val) → U2(M, N, Val, ackermann_in(s(M), N, Val1))
ackermann_in(s(M), 0, Val) → U1(M, Val, ackermann_in(M, s(0), Val))
ackermann_in(0, N, s(N)) → ackermann_out(0, N, s(N))
U1(M, Val, ackermann_out(M, s(0), Val)) → ackermann_out(s(M), 0, Val)
U2(M, N, Val, ackermann_out(s(M), N, Val1)) → U3(M, N, Val, ackermann_in(M, Val1, Val))
U3(M, N, Val, ackermann_out(M, Val1, Val)) → ackermann_out(s(M), s(N), Val)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PrologToPiTRSProof
ackermann_in(s(M), s(N), Val) → U2(M, N, Val, ackermann_in(s(M), N, Val1))
ackermann_in(s(M), 0, Val) → U1(M, Val, ackermann_in(M, s(0), Val))
ackermann_in(0, N, s(N)) → ackermann_out(0, N, s(N))
U1(M, Val, ackermann_out(M, s(0), Val)) → ackermann_out(s(M), 0, Val)
U2(M, N, Val, ackermann_out(s(M), N, Val1)) → U3(M, N, Val, ackermann_in(M, Val1, Val))
U3(M, N, Val, ackermann_out(M, Val1, Val)) → ackermann_out(s(M), s(N), Val)
ACKERMANN_IN(s(M), s(N), Val) → U21(M, N, Val, ackermann_in(s(M), N, Val1))
ACKERMANN_IN(s(M), s(N), Val) → ACKERMANN_IN(s(M), N, Val1)
ACKERMANN_IN(s(M), 0, Val) → U11(M, Val, ackermann_in(M, s(0), Val))
ACKERMANN_IN(s(M), 0, Val) → ACKERMANN_IN(M, s(0), Val)
U21(M, N, Val, ackermann_out(s(M), N, Val1)) → U31(M, N, Val, ackermann_in(M, Val1, Val))
U21(M, N, Val, ackermann_out(s(M), N, Val1)) → ACKERMANN_IN(M, Val1, Val)
ackermann_in(s(M), s(N), Val) → U2(M, N, Val, ackermann_in(s(M), N, Val1))
ackermann_in(s(M), 0, Val) → U1(M, Val, ackermann_in(M, s(0), Val))
ackermann_in(0, N, s(N)) → ackermann_out(0, N, s(N))
U1(M, Val, ackermann_out(M, s(0), Val)) → ackermann_out(s(M), 0, Val)
U2(M, N, Val, ackermann_out(s(M), N, Val1)) → U3(M, N, Val, ackermann_in(M, Val1, Val))
U3(M, N, Val, ackermann_out(M, Val1, Val)) → ackermann_out(s(M), s(N), Val)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
ACKERMANN_IN(s(M), s(N), Val) → U21(M, N, Val, ackermann_in(s(M), N, Val1))
ACKERMANN_IN(s(M), s(N), Val) → ACKERMANN_IN(s(M), N, Val1)
ACKERMANN_IN(s(M), 0, Val) → U11(M, Val, ackermann_in(M, s(0), Val))
ACKERMANN_IN(s(M), 0, Val) → ACKERMANN_IN(M, s(0), Val)
U21(M, N, Val, ackermann_out(s(M), N, Val1)) → U31(M, N, Val, ackermann_in(M, Val1, Val))
U21(M, N, Val, ackermann_out(s(M), N, Val1)) → ACKERMANN_IN(M, Val1, Val)
ackermann_in(s(M), s(N), Val) → U2(M, N, Val, ackermann_in(s(M), N, Val1))
ackermann_in(s(M), 0, Val) → U1(M, Val, ackermann_in(M, s(0), Val))
ackermann_in(0, N, s(N)) → ackermann_out(0, N, s(N))
U1(M, Val, ackermann_out(M, s(0), Val)) → ackermann_out(s(M), 0, Val)
U2(M, N, Val, ackermann_out(s(M), N, Val1)) → U3(M, N, Val, ackermann_in(M, Val1, Val))
U3(M, N, Val, ackermann_out(M, Val1, Val)) → ackermann_out(s(M), s(N), Val)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
↳ PrologToPiTRSProof
ACKERMANN_IN(s(M), s(N), Val) → U21(M, N, Val, ackermann_in(s(M), N, Val1))
ACKERMANN_IN(s(M), s(N), Val) → ACKERMANN_IN(s(M), N, Val1)
U21(M, N, Val, ackermann_out(s(M), N, Val1)) → ACKERMANN_IN(M, Val1, Val)
ACKERMANN_IN(s(M), 0, Val) → ACKERMANN_IN(M, s(0), Val)
ackermann_in(s(M), s(N), Val) → U2(M, N, Val, ackermann_in(s(M), N, Val1))
ackermann_in(s(M), 0, Val) → U1(M, Val, ackermann_in(M, s(0), Val))
ackermann_in(0, N, s(N)) → ackermann_out(0, N, s(N))
U1(M, Val, ackermann_out(M, s(0), Val)) → ackermann_out(s(M), 0, Val)
U2(M, N, Val, ackermann_out(s(M), N, Val1)) → U3(M, N, Val, ackermann_in(M, Val1, Val))
U3(M, N, Val, ackermann_out(M, Val1, Val)) → ackermann_out(s(M), s(N), Val)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ PrologToPiTRSProof
ACKERMANN_IN(s(M)) → ACKERMANN_IN(M)
ACKERMANN_IN(s(M)) → U21(M, ackermann_in(s(M)))
U21(M, ackermann_out) → ACKERMANN_IN(M)
ACKERMANN_IN(s(M)) → ACKERMANN_IN(s(M))
ackermann_in(s(M)) → U2(M, ackermann_in(s(M)))
ackermann_in(s(M)) → U1(ackermann_in(M))
ackermann_in(0) → ackermann_out
U1(ackermann_out) → ackermann_out
U2(M, ackermann_out) → U3(ackermann_in(M))
U3(ackermann_out) → ackermann_out
ackermann_in(x0)
U1(x0)
U2(x0, x1)
U3(x0)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACKERMANN_IN(s(M)) → ACKERMANN_IN(M)
U21(M, ackermann_out) → ACKERMANN_IN(M)
Used ordering: Polynomial interpretation [25]:
ACKERMANN_IN(s(M)) → U21(M, ackermann_in(s(M)))
ACKERMANN_IN(s(M)) → ACKERMANN_IN(s(M))
POL(0) = 1
POL(ACKERMANN_IN(x1)) = x1
POL(U1(x1)) = 0
POL(U2(x1, x2)) = 0
POL(U21(x1, x2)) = 1 + x1
POL(U3(x1)) = 0
POL(ackermann_in(x1)) = 1 + x1
POL(ackermann_out) = 1
POL(s(x1)) = 1 + x1
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
ACKERMANN_IN(s(M)) → U21(M, ackermann_in(s(M)))
ACKERMANN_IN(s(M)) → ACKERMANN_IN(s(M))
ackermann_in(s(M)) → U2(M, ackermann_in(s(M)))
ackermann_in(s(M)) → U1(ackermann_in(M))
ackermann_in(0) → ackermann_out
U1(ackermann_out) → ackermann_out
U2(M, ackermann_out) → U3(ackermann_in(M))
U3(ackermann_out) → ackermann_out
ackermann_in(x0)
U1(x0)
U2(x0, x1)
U3(x0)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ PrologToPiTRSProof
ACKERMANN_IN(s(M)) → ACKERMANN_IN(s(M))
ackermann_in(s(M)) → U2(M, ackermann_in(s(M)))
ackermann_in(s(M)) → U1(ackermann_in(M))
ackermann_in(0) → ackermann_out
U1(ackermann_out) → ackermann_out
U2(M, ackermann_out) → U3(ackermann_in(M))
U3(ackermann_out) → ackermann_out
ackermann_in(x0)
U1(x0)
U2(x0, x1)
U3(x0)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ PrologToPiTRSProof
ACKERMANN_IN(s(M)) → ACKERMANN_IN(s(M))
ackermann_in(x0)
U1(x0)
U2(x0, x1)
U3(x0)
ackermann_in(x0)
U1(x0)
U2(x0, x1)
U3(x0)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ NonTerminationProof
↳ PrologToPiTRSProof
ACKERMANN_IN(s(M)) → ACKERMANN_IN(s(M))
ACKERMANN_IN(s(M)) → ACKERMANN_IN(s(M))
ackermann_in(s(M), s(N), Val) → U2(M, N, Val, ackermann_in(s(M), N, Val1))
ackermann_in(s(M), 0, Val) → U1(M, Val, ackermann_in(M, s(0), Val))
ackermann_in(0, N, s(N)) → ackermann_out(0, N, s(N))
U1(M, Val, ackermann_out(M, s(0), Val)) → ackermann_out(s(M), 0, Val)
U2(M, N, Val, ackermann_out(s(M), N, Val1)) → U3(M, N, Val, ackermann_in(M, Val1, Val))
U3(M, N, Val, ackermann_out(M, Val1, Val)) → ackermann_out(s(M), s(N), Val)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
ackermann_in(s(M), s(N), Val) → U2(M, N, Val, ackermann_in(s(M), N, Val1))
ackermann_in(s(M), 0, Val) → U1(M, Val, ackermann_in(M, s(0), Val))
ackermann_in(0, N, s(N)) → ackermann_out(0, N, s(N))
U1(M, Val, ackermann_out(M, s(0), Val)) → ackermann_out(s(M), 0, Val)
U2(M, N, Val, ackermann_out(s(M), N, Val1)) → U3(M, N, Val, ackermann_in(M, Val1, Val))
U3(M, N, Val, ackermann_out(M, Val1, Val)) → ackermann_out(s(M), s(N), Val)
ACKERMANN_IN(s(M), s(N), Val) → U21(M, N, Val, ackermann_in(s(M), N, Val1))
ACKERMANN_IN(s(M), s(N), Val) → ACKERMANN_IN(s(M), N, Val1)
ACKERMANN_IN(s(M), 0, Val) → U11(M, Val, ackermann_in(M, s(0), Val))
ACKERMANN_IN(s(M), 0, Val) → ACKERMANN_IN(M, s(0), Val)
U21(M, N, Val, ackermann_out(s(M), N, Val1)) → U31(M, N, Val, ackermann_in(M, Val1, Val))
U21(M, N, Val, ackermann_out(s(M), N, Val1)) → ACKERMANN_IN(M, Val1, Val)
ackermann_in(s(M), s(N), Val) → U2(M, N, Val, ackermann_in(s(M), N, Val1))
ackermann_in(s(M), 0, Val) → U1(M, Val, ackermann_in(M, s(0), Val))
ackermann_in(0, N, s(N)) → ackermann_out(0, N, s(N))
U1(M, Val, ackermann_out(M, s(0), Val)) → ackermann_out(s(M), 0, Val)
U2(M, N, Val, ackermann_out(s(M), N, Val1)) → U3(M, N, Val, ackermann_in(M, Val1, Val))
U3(M, N, Val, ackermann_out(M, Val1, Val)) → ackermann_out(s(M), s(N), Val)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
ACKERMANN_IN(s(M), s(N), Val) → U21(M, N, Val, ackermann_in(s(M), N, Val1))
ACKERMANN_IN(s(M), s(N), Val) → ACKERMANN_IN(s(M), N, Val1)
ACKERMANN_IN(s(M), 0, Val) → U11(M, Val, ackermann_in(M, s(0), Val))
ACKERMANN_IN(s(M), 0, Val) → ACKERMANN_IN(M, s(0), Val)
U21(M, N, Val, ackermann_out(s(M), N, Val1)) → U31(M, N, Val, ackermann_in(M, Val1, Val))
U21(M, N, Val, ackermann_out(s(M), N, Val1)) → ACKERMANN_IN(M, Val1, Val)
ackermann_in(s(M), s(N), Val) → U2(M, N, Val, ackermann_in(s(M), N, Val1))
ackermann_in(s(M), 0, Val) → U1(M, Val, ackermann_in(M, s(0), Val))
ackermann_in(0, N, s(N)) → ackermann_out(0, N, s(N))
U1(M, Val, ackermann_out(M, s(0), Val)) → ackermann_out(s(M), 0, Val)
U2(M, N, Val, ackermann_out(s(M), N, Val1)) → U3(M, N, Val, ackermann_in(M, Val1, Val))
U3(M, N, Val, ackermann_out(M, Val1, Val)) → ackermann_out(s(M), s(N), Val)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
ACKERMANN_IN(s(M), s(N), Val) → U21(M, N, Val, ackermann_in(s(M), N, Val1))
ACKERMANN_IN(s(M), s(N), Val) → ACKERMANN_IN(s(M), N, Val1)
U21(M, N, Val, ackermann_out(s(M), N, Val1)) → ACKERMANN_IN(M, Val1, Val)
ACKERMANN_IN(s(M), 0, Val) → ACKERMANN_IN(M, s(0), Val)
ackermann_in(s(M), s(N), Val) → U2(M, N, Val, ackermann_in(s(M), N, Val1))
ackermann_in(s(M), 0, Val) → U1(M, Val, ackermann_in(M, s(0), Val))
ackermann_in(0, N, s(N)) → ackermann_out(0, N, s(N))
U1(M, Val, ackermann_out(M, s(0), Val)) → ackermann_out(s(M), 0, Val)
U2(M, N, Val, ackermann_out(s(M), N, Val1)) → U3(M, N, Val, ackermann_in(M, Val1, Val))
U3(M, N, Val, ackermann_out(M, Val1, Val)) → ackermann_out(s(M), s(N), Val)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
ACKERMANN_IN(s(M)) → ACKERMANN_IN(M)
ACKERMANN_IN(s(M)) → U21(M, ackermann_in(s(M)))
U21(M, ackermann_out(s(M))) → ACKERMANN_IN(M)
ACKERMANN_IN(s(M)) → ACKERMANN_IN(s(M))
ackermann_in(s(M)) → U2(M, ackermann_in(s(M)))
ackermann_in(s(M)) → U1(M, ackermann_in(M))
ackermann_in(0) → ackermann_out(0)
U1(M, ackermann_out(M)) → ackermann_out(s(M))
U2(M, ackermann_out(s(M))) → U3(M, ackermann_in(M))
U3(M, ackermann_out(M)) → ackermann_out(s(M))
ackermann_in(x0)
U1(x0, x1)
U2(x0, x1)
U3(x0, x1)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACKERMANN_IN(s(M)) → ACKERMANN_IN(M)
U21(M, ackermann_out(s(M))) → ACKERMANN_IN(M)
Used ordering: Polynomial interpretation [25]:
ACKERMANN_IN(s(M)) → U21(M, ackermann_in(s(M)))
ACKERMANN_IN(s(M)) → ACKERMANN_IN(s(M))
POL(0) = 1
POL(ACKERMANN_IN(x1)) = x1
POL(U1(x1, x2)) = 0
POL(U2(x1, x2)) = 0
POL(U21(x1, x2)) = 1 + x1
POL(U3(x1, x2)) = 0
POL(ackermann_in(x1)) = 1 + x1
POL(ackermann_out(x1)) = 1
POL(s(x1)) = 1 + x1
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
ACKERMANN_IN(s(M)) → U21(M, ackermann_in(s(M)))
ACKERMANN_IN(s(M)) → ACKERMANN_IN(s(M))
ackermann_in(s(M)) → U2(M, ackermann_in(s(M)))
ackermann_in(s(M)) → U1(M, ackermann_in(M))
ackermann_in(0) → ackermann_out(0)
U1(M, ackermann_out(M)) → ackermann_out(s(M))
U2(M, ackermann_out(s(M))) → U3(M, ackermann_in(M))
U3(M, ackermann_out(M)) → ackermann_out(s(M))
ackermann_in(x0)
U1(x0, x1)
U2(x0, x1)
U3(x0, x1)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
ACKERMANN_IN(s(M)) → ACKERMANN_IN(s(M))
ackermann_in(s(M)) → U2(M, ackermann_in(s(M)))
ackermann_in(s(M)) → U1(M, ackermann_in(M))
ackermann_in(0) → ackermann_out(0)
U1(M, ackermann_out(M)) → ackermann_out(s(M))
U2(M, ackermann_out(s(M))) → U3(M, ackermann_in(M))
U3(M, ackermann_out(M)) → ackermann_out(s(M))
ackermann_in(x0)
U1(x0, x1)
U2(x0, x1)
U3(x0, x1)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
ACKERMANN_IN(s(M)) → ACKERMANN_IN(s(M))
ackermann_in(x0)
U1(x0, x1)
U2(x0, x1)
U3(x0, x1)
ackermann_in(x0)
U1(x0, x1)
U2(x0, x1)
U3(x0, x1)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ NonTerminationProof
ACKERMANN_IN(s(M)) → ACKERMANN_IN(s(M))
ACKERMANN_IN(s(M)) → ACKERMANN_IN(s(M))